当前位置:看书日>科幻灵异>科研从博士生开始> 第243章 两个重磅消息!抢手人才!
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

上一章 目录 +书签 下一页

第243章 两个重磅消息!抢手人才!(1 / 2)

第243章两个重磅消息!抢手人才!

张硕所做的研究标题是《核聚变中强力、电磁力协同和反应关联》,报告内容可以分成三个部分。

第一部分是研究的基础内容,主体是联系核聚变反应原理,进行电磁力、强力与反应关联的数学分析,也就是从基础力关系的角度,去阐述核聚变反应。

第二部分则是拓展,就和源点论直接相关了,是以电磁力、强力关联的共通性基础,阐述其影响反应速率的数学原理。

最后一部分则是总结,以第二部分的结论为基础,认为可以通过调节磁场强度,来稳定控制核聚变的反应速率。

在报告完成以后,很多人都感觉非常的惊讶。

报告的标题已经说明了研究内容,再加上是张硕的报告,第一部分并没有出乎意料。

在会议开始的时候,张硕的发言说明了源点论研究方向,他的研究是理论方向,也就是以基础力关联来联系其他物理现象。

第二部分和第三部分是完全没有想到的。

尤其是第三部分,以理论为基础说明了一种实现可控核聚变的新方法。

这种方法是否可行呢?

很多学者都忍不住开始了讨论,“理论基础是没什么问题,其中的数学分析非常精彩,而且是张硕教授的研究……”

“张硕教授的研究也不一定,对吧?学术不能搞个人崇拜,核聚变反应,说能够通过调节磁场来控制反应速率……听起来有些不靠谱。”

“到目前只是理论是否可行,还要继续深入的研究,而且,理论也是不完善的。”

“就算理论完善,谁会为这种理论买单呢?研究投入肯定会很大吧。”

“一种全新的控制核聚变的方法,投入绝对是海量的。”

“但如果真能成功,就可以解决控制核聚变的问题。”

“也不一定吧,即便能够实现电子控制,但可能会碰到其他的技术问题,就像托卡马克装置一样。”

“至少现在,托卡马克装置控制核聚变,技术上已经很难有质的突破了,新方法也值得一试。”

会场最前排。

张硕被好几个学者围住了,也在说着研究问题,“这是我在研究电磁力、强力关联的过程中,联系核聚变所做的一个拓展研究。”

“可行性?也许吧,我认为可行,但也不可行。即便电磁干涉反应能够实现,可能也会碰到其他的问题。”

“现在还只是理论,理论也需要继续完善,而且要研究技术,就需要很多的基础实验……”

这是事实。

张硕能确定的就是理论没有问题,也就是电磁调节确实可以影响到核聚变的反应速率。

如果做很多的基础实验,就一定能够检测到电磁变化对核聚变反应速率的影响。

但要说以此实现可控核聚变,可行性是很难说的,没有基础实验的支持下,技术参数是不确定的。

比如,电磁调控需求非常高,变化频率非常快。

这就产生了一个技术精度的问题。

托卡马克装置控制核聚变,最大的问题是材料性能跟不上,同时,控制精度上也有很多问题。

电磁调控来影响核聚变反应速率,后者的问题更大一些,也就是现有的技术可能会无法实现所需求的控制精度,又或者,无法制造所需要超高磁场。

在说完了研究的问题以后,邱成文感兴趣的问道,“张硕,你是准备研究核聚变吗?”

不少人都认真听着。

“可能会吧。”张硕给了一个不确定的答案。

邱成文笑道,“如果能以基础力关联的理论方向,研究出一种控制核聚变的新技术不管是否能转化为应用,相信对于理论以及科技都是非常重要的。”

“甚至说,意义重大!”

好多人不由跟着点头。

邱成文说的确实很有道理,即便新的技术依旧不能够让核聚变实现应用,却能说明基础力关联可以拓展其他的物理以及科技。

一些没实现大规模应用的技术,都能够以基础力关联进行理论解析,进而找到实现应用的方式。

这对于理论发展和科技研发都是非常重要的。

同时,核聚变新的控制技术,也会成为源点论拓展方向的旗帜性研究。

现在人类科技有很多关键的技术,都只还停留在实验室阶段,并没有实现大规模的应用覆盖。

还有一些技术,已经有应用基础,但因为其成本原因,无法实现大规模的应用。

超导技术就是典型的例子。

即便是高温超导材料,也需要液氮来进行环境冷却,自然就无法实现大规模的应用。

若是能够以基础力关联,对于超导理论机制进行论证,进而支持制造出需求更低、性价比更高的超导材料,也就能让超导技术实现更大范围的应用,让科技取得快速的进步。

这些都是可以期待的。

在上午的会议结束以后,很多人还在讨论张硕的研究报告。

有些知名学者则是碰到了记者,记者们对于张硕的研究也很感兴趣,他们询问了学者们的看法。

“张硕教授的报告非常精彩,他的研究是以基础力关联去分析核聚变反应。”

“其拓展了一种控制核聚变的新方法,也许会在未来帮助实现人类掌控核聚变。”

“张硕教授非常的天才,他正在研究核聚变问题,也许可以期待,这个领域能有新的进步……”

张硕发表的研究和核聚变直接相关,很多学者自然而然就认为他开始研究核聚变。

但有些人并不这么看。

比如,周建明。

周建明在科技工业局工作,参与过很多保密性的项目研究,他知道佟智国团队的研究,也知道高晓申请的能源项目。

原子核核力拆分的稳定性控制,可是以电磁力干涉制造能源的技术,单元素物质就可以直接作为原材料,而且能源制造效率非常高。

其基础以及控制稳定性,要比核聚变强的多。

“原子核核力拆分技术,才代表未来的能源技术。”

“核聚变?控制系数那么高,而且不稳定,原材料还需要放射性的氚……”

“张硕教授不可能去研究可控核聚变!”

“这个理论研究,也许就只是引导一个方向而已……”

周建明的猜测只对了一半。

张硕确实无心去研究控制核聚变技术,准确的说,是通过可控核聚变来掌握新的能源技术。

‘原子核核力拆分’比核聚变的能量效率高的多,控制需求则是低很多。

‘原子核核力拆分’,已经能够让人类实现掌握高效、低成本的清洁能源。

核聚变相关的理论研究,只是研究过程中附带做出来的,而报告上的内容,则是专门为会议准备的。

张硕倒是对于核聚变非常感兴趣,但感兴趣的并不只是‘可控’,而是可控的前提下,实现电磁力的直接转化。

‘可控’,只是技术实现的必要的过程而已。

核聚变的控制只是第一步,但实现核聚变控制,电磁调控只是一种方式,更有希望实现的是‘内部离子物质散发强力干扰’。

后者才是实验方向。

在实现了核聚变的控制以后,就可以实现直接转化电磁力,也就是直接在输出电力。

上一章 目录 +书签 下一页

收藏本站( Ctrl+D )